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Real-world (RW) economic scenarios 

are scenarios that appear credible with 

respect to what happened in the past. 

Simple modelling approaches which are 

popular in practice often fail to fit the 

historical distributions very well. It is the 

case for popular models of equity stocks 

of indices that assume constant volatility 

while historical time series clearly 

demonstrate that volatilities vary 

significantly over time.  

In this paper, we describe a recent modelling approach of the 

volatility, based on the fractional Brownian motion, which is 

highly consistent with historical data.  

Real-world economic scenarios have become a key tool for 

insurance companies for applications requiring deriving realistic 

distributions of the balance sheet. These applications cover 

asset and liability management (ALM) studies, computing the 

Solvency Capital Requirement (SCR) within an Internal model, 

or pricing assets or liabilities including a risk premium. Unlike 

risk-neutral (RN) economic scenarios, RW ones should be 

realistic in view of the historical data and/or management 

expectations about future outcomes (e.g., a further unlimited 

falling of interest rates doesn’t appear to be likely even if it is 

“suggested” by historical data). However, in practice, the 

majority of the features of RW scenarios are calibrated to the 

history because in most cases history is the most objective 

predictor for the future. There are two possible approaches for 

measuring how consistent a model is with respect to historical 

data: 

1. To evaluate the ability of the model to replicate some 

statistical properties of historical data (for example, 

the histogram of increments). 

2. To evaluate the ability of the model to satisfy some 

empirical properties, often called stylised facts. See, 

for example, Cont (2001).1  

These two approaches are complementary as the second one 

allows us to capture path-wise properties (for example volatility 

clustering) that the first approach doesn’t capture. Thus, we 

propose to use these approaches as measures of the ability of 

models to replicate historical data.  

In this paper, we focus on equity models. Within the insurance 

industry, the most widespread model for generating equity 

paths is the celebrated Black-Scholes model, which models the 

spot price of a stock or index under the RW probability 

according to the following dynamics: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡  

where 𝜇 is the instantaneous return of the stock (also called 

drift), 𝜎 is the volatility, and (𝑊𝑡)𝑡≥0 is a standard  

Brownian motion  

Sometimes, the drift and/or the volatility are assumed to be 

deterministic functions of the time. The main advantages of this 

model are its simplicity and the fact that it allows us to preserve 

the consistency between the RW and RN frameworks.  

One of the underlying assumptions of this model is the 

normality and independence of the log-increments log
𝑆𝑡

𝑆𝑡−1
 at 

any timescale. However, this assumption doesn’t hold true in 

practice, as shown in Figures 1 and 2. In Figure 1, one can 

indeed observe that the empirical distribution of historical log-

increments is skewed, i.e., not symmetric around the mean, 

unlike the normal distribution. In particular, the empirical 

distribution exhibits a fatter left tail than the normal distribution.  

This is more visible in Figure 2 where it appears that the 

smallest quantiles of the normal distribution are much lower 

than those of the empirical distribution. This is particularly 

undesirable if one wants to compute the SCR using this model 

because it will lead to an underestimation of the 0.5% worst 

one-year deviation of the considered equity portfolio. 

FIGURE 1: HISTOGRAM OF MONTHLY LOG-INCREMENTS (IN BLUE) OF 

THE S&P 500 FROM JANUARY 1980 TO DECEMBER 2020, CALIBRATED 

NORMAL DENSITY IN RED 
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FIGURE 2: QQPLOT COMPARING THE EMPIRICAL QUANTILES OF THE 

S&P 500 MONTHLY LOG-INCREMENTS TO THE NORMAL QUANTILES  

 

A natural way to improve this modelling is to assume that the 

volatility is not deterministic anymore but stochastic. Such 

extension is not new and the first successful attempt to 

construct a continuous-time model with stochastic volatility is 

due to Heston (1993).2 In the original paper, this model has 

been constructed for RN modelling, but similar dynamics could 

be also considered in a RW framework, where the parameters 

of the Cox-Ingersoll-Ross stochastic volatility dynamics are 

derived from the price time series. An alternative modelling 

approach is to use a Generalised AutoRegressive Conditional 

Heteroscedasticity (GARCH) process. Although it is not strictly 

speaking a continuous-time stochastic volatility model, it allows 

us to achieve a good fit to financial time series. Moreover, it 

allows for volatility clustering, which is a widely accepted 

stylised fact.  

In this paper, we present and revisit an analysis of 

reconstructed historical spot volatility conducted by Gatheral et 

al. (2018) in their seminal paper "Volatility Is Rough".4 Their 

main conclusion is that the behaviour of historical log-volatility 

is very close to the behaviour of a fractional Brownian motion 

with Hurst parameter of order 0.1, which is less regular 

(“rougher”) than the standard Brownian motion. This analysis 

suggests that RW equity models should use rough volatility in 

order to be realistic.  

A brief introduction to the fractional 
Brownian motion 
The fractional Brownian motion (fBm), is a generalisation of the 

Brownian motion. It depends on parameter 𝐻 ∈ (0,1), called 

the Hurst parameter, whose value parametrises several 

properties of the fBm. Furthermore, its increments are not 

necessarily independent. 

Formally, the fBm (𝑊𝑡
𝐻)𝑡∈ℝ is a centered self-similar Gaussian 

process with stationary increments satisfying the following 

scaling property: 

∀𝑡 ∈ ℝ, Δ ≥ 0, 𝑞 > 0: 𝔼[|𝑊𝑡+Δ
𝐻 − 𝑊𝑡

𝐻|
𝑞

] = 𝐾𝑞Δ𝑞𝐻 (1) 

with 𝐾𝑞 =  𝔼[|𝐺|𝑞] and 𝐺 ~ 𝒩(0,1). In particular, the increments 

𝑊𝑡+Δ
𝐻 − 𝑊𝑡

𝐻 of a fBm are normally distributed with mean 0 and 

variance Δ2𝐻.  

Moreover, when 𝐻 =
1

2
 the fBm reduces to the standard 

Brownian motion (and independence between increments is 

recovered in that case).  

FIGURE 3: FBM SAMPLE PATHS FOR DIFFERENT VALUES OF THE  

HURST PARAMETER  

 

The Hurst parameter 𝐻 allows us to control the regularity (in 

the sense of Hölder) of the sample paths of 𝑊𝐻: when 𝐻 is 

closer to one, the sample paths become more regular than 

those of the standard Brownian motion and when 𝐻 is closer to 

zero, the sample paths become less regular.5 A comparison of 

the regularity of sample paths for different values of Hurst 

parameter is shown in Figure 3.  

Again, one of the main differences of the fBm from the 

standard Brownian motion is that the increments are not 

independent (except if 𝐻 =
1

2
): they keep memory of what 

happened in the past. More precisely, for 𝐻 ∈ (0,
1

2
 ), the fBm 

has the property of counterpersistence (related to mean 

reversion): if it was increasing in the past, it is more likely to 

decrease in the future and vice versa. In contrast, for 𝐻 ∈

(
1

2
, 1), the fBm is persistent: it is more likely to keep trend than 

to break it. Moreover, in the case 𝐻 ∈ (
1

2
, 1), the fBm is said to 

have long memory because the autocorrelation function 

decays very slowly.  
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Historical volatility analysis  
For a long time, the long memory property of the volatility 

process has been considered as a stylised fact due in 

particular to the papers from Ding et al. (1993),6 Andersen and 

Bollerslev (1997)7 and Andersen et al. (2001).8 This has 

motivated (among other reasons) Comte and Renault (1998)9 

to model log-volatility using a fBm with a Hurst parameter 𝐻 >

1/2 to ensure long memory. However, the long memory 

property and the choice of 𝐻 >
1

2
 has been recently challenged 

by Gatheral et al. (2018) as they estimated the Hurst parameter 

on reconstructed historical volatility time series and obtained 

values between 0.08 and 0.2, which indicates that the volatility 

doesn’t have long memory. In the following, we briefly describe 

and reproduce the analysis they performed, and we discuss the 

implications for RW modelling at relevant simulation timescales 

within the insurance industry.  

Let us introduce 

𝑚(𝑞, Δ) =
1

𝑁
∑ |log 𝜎𝑘Δ − log 𝜎(𝑘−1)Δ|

𝑞
 

N

k=1

 

where Δ > 0, 𝑞 ≥ 0, 𝑁 = ⌊𝑇/Δ⌋ and 𝜎0, 𝜎Δ, …, 𝜎𝑁Δ are discrete 

observations of the volatility process of an equity index.  

Assuming stationary log-increments and that a law of large 

numbers can be applied, 𝑚(𝑞, Δ) is an unbiased estimator of 

𝔼[|log 𝜎Δ − log 𝜎0|𝑞]. If the log-volatility behaves as a fBm, we 

expect that log 𝑚(𝑞, Δ) is essentially an affine function of log Δ 

with slope 𝑞𝐻 due to equation (1). 

Using daily realised volatility estimates10 from the Oxford-Man 

Institute of Quantitative Finance Realized Library11 (from 2000 

to 2021) as a proxy to the spot volatility (which is unobserved), 

we can plot log 𝑚(𝑞, Δ) as a function of log Δ for Δ ranging from 

one day to 360 days. The obtained graphs for the S&P 500 and 

FTSE 100 historical volatility are given in Figures 4 and 5.  

We observe that for each value of 𝑞, log 𝑚(𝑞, Δ) looks like an 

affine function of log Δ especially for low and medium values of 

Δ, which is not surprising because, for low and medium values 

of Δ, 𝑚(𝑞, Δ) is estimated on more data points. If we restrict Δ 

between 20 and 40 days, that is around one month, which is 

generally the time step considered in RW modelling in 

insurance, and then we obtain Figures 6 and 7. Moreover, if we 

plot the slope 𝜉𝑞 of each of the affine functions as a function of 

𝑞, we obtain a linear function (intercept is very close to zero) as 

shown by Figure 8.  

FIGURE 4: 𝐥𝐨𝐠(𝒎(𝒒, 𝜟)) AS A FUNCTION OF 𝐥𝐨𝐠(𝚫) FOR THE S&P 500  

FOR 𝚫 = 𝟏, … , 𝟑𝟔𝟎 

 

FIGURE 5: 𝐥𝐨𝐠(𝒎(𝒒, 𝜟)) AS A FUNCTION OF 𝐥𝐨𝐠(𝚫) FOR THE FTSE 100  

FOR 𝚫 = 𝟏, … , 𝟑𝟔𝟎 

  
 

FIGURE 6: 𝐥𝐨𝐠(𝒎(𝒒, 𝜟)) AS A FUNCTION OF 𝐥𝐨𝐠(𝚫) FOR THE S&P 500  

FOR 𝚫 = 𝟐𝟎, … , 𝟒𝟎 
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FIGURE 7: 𝐥𝐨𝐠(𝒎(𝒒, 𝜟)) AS A FUNCTION OF 𝐥𝐨𝐠(𝚫) FOR THE FTSE 100  

FOR 𝚫 = 𝟐𝟎, … , 𝟒𝟎 

 

These results show that: 

log 𝑚(𝑞, Δ) ≈ 𝜉𝑞 × log Δ + 𝑏𝑞  

and 

𝜉𝑞 ≈ 𝑞𝐻. 

The Hurst parameter 𝐻 is estimated as 0.09 for the S&P 500 

and 0.10 for the FTSE 100. This behaviour of 𝑚(𝑞, Δ) is fully 

consistent with the scaling property of the fBm given in 

equation (1). Moreover, if we look at the histogram of the 

monthly log-increments of the volatility, we obtain a distribution 

that is very close to a Gaussian distribution, as shown by 

Figures 9 and 10. It is interesting to observe that rescaling the 

standard deviation obtained from the normal fit of one-day log-

increments by Δ𝐻 (that is, the theoretical standard deviation of 

a fBm) produces a curve that is very close to a fitted normal 

density on monthly log-increments (by log-likelihood 

maximisation).  

FIGURE 8: SLOPE 𝝃𝒒 OF AS A FUNCTION OF 𝒒 FOR S&P 500 (LEFT) AND 

FTSE 100 (RIGHT) 

   

FIGURE 9: HISTOGRAM OF MONTHLY LOG-INCREMENTS FOR THE S&P 500 

 

To summarise, this analysis shows that, empirically, the 

volatility log-increments behave as a fBm with Hurst parameter 

near 0.1. While this may seem to contradict the papers 

mentioned previously that conclude long memory of the 

volatility (and therefore 𝐻 >
1

2
 for a fBm), Gatheral et al. show 

that there is no contradiction. For this purpose, they apply the 

statistical procedure used by Andersen et al. (2001) to detect 

long memory on simulated fBm paths with 𝐻 near 0.1. The 

procedure identifies long memory, which proves that the 

procedure is fragile and can lead to inaccurate conclusions of 

long memory.  

Therefore this empirical study suggests the following model: 

log 𝜎𝑡+Δ − log 𝜎𝑡 = 𝜈(𝑊𝑡+Δ
𝐻 − 𝑊𝑡

𝐻) (2) 

which depends on only two parameters 𝜈 and 𝐻.  

However, this model is not stationary, which implies that the 

volatility could become arbitrarily large at very large times. This 

is not desirable because we observe empirically that periods of 

high volatility are generally limited in time and followed by 

periods of low volatility (see top graph of Figure 11 below for 

instance). Following Gatheral et al., we modify model (2) by 

adding a mean-reverting term to ensure stationarity: 

𝑑𝑋𝑡 = 𝜈𝑑𝑊𝑡
𝐻 − 𝛼(𝑋𝑡 − 𝑚)𝑑𝑡 (3) 

where 𝑋𝑡 = log 𝜎𝑡, 𝛼 is the mean-reverting speed and 𝑚 is the 

mean-reverting level.  

Note that model (3) is a fractional version of the Ornstein-

Uhlenbeck dynamics. Gatheral et al. suggest taking a small 

value of 𝛼 so that the log-volatility behaves locally as a fBm.  
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FIGURE 10: HISTOGRAM OF MONTHLY LOG-INCREMENTS FOR THE S&P 500 

 

In order to show that the model (3) is more realistic than a 

model based on the standard Brownian motion, we compare in 

Figure 11 the historical (reconstructed) daily volatility path of 

the S&P 500 from the Oxford-Man Institute to a path generated 

by model (3) and a path generated by the same model but with 

a standard Brownian motion instead of a fBm. The Hurst 

parameter has been set to the value obtained through the 

linear regression and the scaling parameter 𝜈 has been set to 

the standard deviation of the one-day volatility log-increments. 

The mean-reverting speed 𝛼 has been set to zero for the 

fractional version of model (3) for simplicity but simulation of 

paths with a non-zero mean-reversion speed is straightforward 

for applications that call for it. On the other hand, for the path 

generated by model (3) with a standard Brownian motion, a 

non-zero mean-reversion speed has been used in order to 

avoid explosions of the volatility.  

The comparison is only visual, but it clearly appears that the 

model based on the fractional Brownian motion produces a 

path that is more like the historical path than the model based 

on the standard Brownian motion. This correspondence 

appears better due to the clustering behaviour of the fBm along 

with the rougher paths obtained. Note, however, that the model 

is not able to generate too-long periods of low volatility, as we 

can observe in the historical data (for example between 2003 

and 2008). One way to refine the model would be therefore to 

include regime switches into the model, for instance by using a 

hidden Markov chain.  

FIGURE 11: EVOLUTION OF THE HISTORICAL (RECONSTRUCTED) 

VOLATILITY OF THE S&P 500 (TOP GRAPH) ALONG WITH A SIMULATED 

PATH OF MODEL (2) WITH A FRACTIONAL BROWNIAN MOTION (MIDDLE 

GRAPH) AND A SIMULATED PATH OF MODEL (2) WITH A STANDARD 

BROWNIAN MOTION (BOTTOM GRAPH) 
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Conclusion 
Although RW modelling has many applications in the 

insurance industry, some existing models remain quite 

limited in their ability to replicate historical dynamics and 

properties. In this paper, we present a new approach 

proposed by Gatheral et al. (2018) for the modelling of 

equity volatility that is highly consistent with historical data. 

More precisely, the proposed model has the following main 

advantages for RW modelling: 

1. It allows us to replicate the statistical distribution of 

the empirical volatility (Gaussian distribution). 

2. It allows us to replicate the regularity of the paths of 

the empirical volatility (scaling property). 

3. It depends on a small number of parameters that can 

be easily estimated. 

4. It seems to be universal—we provided results for two 

major equity indices but similar results have been 

obtained for many other equity indices as well as 

individual equities.12 

5. It is justified from an economic point of view as El 

Euch et al. (2018)13 showed by building a microscopic 

model for the price that the typical behaviours of 

market participants at the high-frequency scale 

generate rough volatility, i.e ., volatility behaving as a 

fBm with Hurst parameter smaller than 
1

2
.Endnotes. 
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