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Least Squares Monte Carlo (LSMC) is a widely used proxy modelling 
technique in the European Insurance industry. It allows its users to model 
components of their balance sheet via suitable polynomial functions in an 
automated way. However, users may experience suboptimal goodness-of-fit 
due to various complexities inherent to the LSMC method while validation is 
not always straightforward. In this paper, we introduce and apply a new 
troubleshooting method specifically designed for LSMC work. 

LSMC uses a large number of training points ranging anywhere from 10,000 to 100,000. These points typically cover the 
entire risk factor space evenly. For each training point, LSMC processes rough estimates of dependent variables (e.g., Net 
Asset Value) relying on a small number—usually between two and 20—of inner simulations. In contrast, traditional curve 
fitting (TCF) considers a much smaller number of training points, but uses a much more accurate estimate of the 
dependent variable for each of them. 

The advantages of using LSMC over TCF include automated term selection and the ability to scale to a large number of 
risk drivers—typically up to 50 risk drivers—without losing the ability to capture risk interactions. LSMC has traditionally 
outperformed TCF-based approaches in the Internal Model space, both in terms of explanatory power and ease of use. 

Out-of-sample (OOS) tests performed on fitted proxy models allow users to evaluate goodness-of-fit of their fitted proxy 
models. OOS validation compares fitted model results against stress valuations generated using the underlying asset 
liability model (ALM) or the "truth model." 

When looking into typical OOS validation results in a high-dimensional risk space, we face a few practical challenges: 

 Do the underlying model assumptions hold true, e.g., homoscedasticity of residuals when 
using ordinary least squares? 

 Which deviations represent a good fit? If the overall fit is "poor," how do we find and resolve 
underlying issues? 

 How do we determine whether issues in the underlying asset liability model are distorting the 
overall fit or if there is a genuine fitting issue? 

One of the inherent difficulties with LSMC troubleshooting stems from the method’s use of a small number of inner 
simulations sampled for each outer training data point. In particular, we cannot directly compare training data points, even 
those that are very close to one another in the risk space, as we estimate the dependent variable for these points using 
entirely different inner simulations featuring different nominal and real yields, different equity returns etc.  

This paper introduces its readers to LSMC Surgery, an approach developed by the authors that is useful in detecting 
underlying model issues. LSMC Surgery allows its users to understand the behaviour of the dependent variable (e.g., 
BEL) in one, two or three dimensions of the risk space, thereby allowing users to zoom into the underlying sources of 
fitting issues. 

A common issue seen when using Ordinary Least Squares (OLS) to fit proxy models on LSMC data is heteroscedasticity 
of residuals, which is a key assumption in regression analysis. This paper shows how LSMC Surgery can help detect 
heteroscedasticity of residuals and suggests ways to improve regression models. 
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1. LSMC Surgery approach 
Under LSMC Surgery, we operate the (generally stochastic) asset liability model in a deterministic (certainty equivalent) 
manner—of course, this amounts to ignoring the time value of options and guarantees. This is a conscious omission given 
that the purpose of this exercise is to detect potential anomalies in the underlying model and/or its configuration for proxy 
modelling purposes. Furthermore, we restrict ourselves to a low-dimensional subspace of the full risk space—by focusing 
onto one, two or three risk drivers at a time while “freezing” all other risk drivers. 

Under this troubleshooting paradigm, a rather small number of training points (e.g., 50 to 250) can give us a sound basis 
for our LSMC validation activities, as we eliminate any “sampling noise” while also making neighbouring points in the risk 
subspace directly comparable with one another in terms of their impact on assets and liabilities.  

In the following sections, we demonstrate LSMC Surgery with the help of a few stylised examples. 

2. One-dimensional LSMC Surgery 
To demonstrate how LSMC Surgery works, we start by looking at a few one-dimensional examples. 

FIGURE 1: LSMC PROXY MODEL FIT TO SIMPLE OPTION-LIKE CASH FLOWS (REGRESSION INPUTS IN BLUE, FITTED MODEL IN BLACK)1  

 

2.1. FITTING TO DATA KINKS  

Our first example illustrates the issue of fitting a simple polynomial to an underlying data set representing an  
option-like pattern.  

The fitting issue here stems from our limitation in the type of proxy models available to us, i.e., a simple polynomial  
must be differentiable across the whole of the fitting space, making it impossible to fit to the underlying data.  

Simple polynomials therefore cannot closely match data sets featuring kinks or discontinuities. 

                                                
1 In each example, we denote the first risk driver as X1. 
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FIGURE 2: LSMC PROXY MODEL FIT TO DATA WITH DISCONTINUITY (REGRESSION INPUTS IN BLUE, FITTED MODEL IN BLACK) 

 

2.2. FITTING TO DATA DISCONTINUITIES  

Our second example illustrates fitting issues stemming from discontinuities in the underlying data.  

Here, a few training points in the lower left corner of the plot appear to be out of place when compared against the general 
trend observed in the entirety of the one-dimensional risk space. Underlying issues in the asset liability models or model 
configuration errors most likely drive this behaviour. This is contrary to the previous example where a genuine "kink" in the 
training data was preventing us from achieving a good fit. One-dimensional LSMC Surgery makes it easy for us to detect 
such issues.  

FIGURE 3: LSMC PROXY MODEL FIT MATCHING THE REGRESSION INPUT DATA CLOSELY (REGRESSION INPUTS IN BLUE, FITTED MODEL IN BLACK)  

 

2.3. EXPLORING COUNTERINTUITIVE DATA SHAPES  

Our third example illustrates a different issue—we have achieved a good fit as is evident by the fitted (black) curve closely 
matching the blue fitting data points. However, one must be able to explain the maxima of the dependent variable 
observed, i.e., the shape of the polynomial or data should be explainable.  

It is up to the user to decide whether the fitted model represents genuine business logic and is not the result of a model 
configuration error. 

In summary, LSMC Surgery allows users not just to troubleshoot fitting issues in their proxy models but to also be able to 
identify issues in the underlying asset liability models. 
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3. Two-dimensional LSMC Surgery 
3.1. DISCOVERING HETEROSCEDASTICITY 

In the previous section, we have presented three examples to demonstrate the value of using LSMC Surgery in a single 
dimension experiment and how troubleshooting methods traditionally used in TCF can help in an LSMC context. However, 
as the reader will have been suspecting already, some practical challenges will not appear in dimension one but in a 
higher-dimensional LSMC Surgery.  

In the stylised example below, we present a two-dimensional example highlighting a heteroscedasticity issue frequently 
observed when using LSMC. Heteroscedasticity is the absence of homoscedasticity, which means that the variability of 
random disturbances in a model is constant across the risk space. Homoscedasticity of residuals is a key assumption in 
regression analysis.  

FIGURE 4: HETEROSCEDASTICITY OF RESIDUALS: RESIDUALS VS. RISK DRIVER VALUE 

 

What we can see in this example is that the size of residuals, plotted on the y-axis, appears to vary significantly depending 
on the value of a risk driver. These residuals result from an LSMC proxy model fit to a simple example of a training data 
set featuring 100 points.  

This observation is a worrying sign in OLS, which assumes homogeneity of variance of residuals. The above example 
shows the residuals are heteroscedastic.  

Upon closer inspection of the underlying data, we observe that the "residual funnel" goes away when we increase the 
number of training points. As it turns out, we would need to increase the number of training points to 1,278 in order to 
overcome the double funnel heteroscedasticity issue. 

In addition to the number of points, the appearance of this residual double funnel also depends on the range of risk 
driver values in the fitting space. If we restrict ourselves to a smaller data cube—by moving from our current data cube 
size of [-1.5, +1.5] to [-1.2, +1.2]—we only require 168 training points in order to avoid the double funnel.  

It is intuitive that we need fewer training points when calibrating LSMC polynomials on a smaller data cube. Yet it is less 
intuitive that the ratio of the point numbers required in our LSMC Surgery experiment—namely 1,278 / 168 = 7.6—is much 
larger than the data range ratio of 1.5 / 1.2 = 1.25.  

A possible interpretation of this finding is that asset liability model behaviour under extremely large combined stresses can 
be rather exotic—which can make proxy model calibrations a disproportionately difficult task, especially when dealing with 
simple polynomial functions. 

Yet before interpreting too much into our example, let us address the residual funnel challenge in a mathematically 
rigorous way. 
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3.2. SOME MATHEMATICAL NOTATION 

Consider the general multiple regression model: 

𝑌 = 𝑋𝛽 + 𝜖 

Where:  

− 𝑌 is a 𝑁 × 1 vector of observations 𝑦௜ , 𝑖 = 1, … , 𝑁 

− 𝑋 is a 𝑁 × 𝑝 matrix of 𝑝 explanatory variables 𝑥௜௞ , 𝑖 = 1, … , 𝑁; 𝑘 = 1, … , 𝑝 

− 𝜖 is a 𝑁 × 1 vector of random errors 

− 𝛽 = (𝛽ଵ, … , 𝛽௣) is a 𝑝 × 1 vector of model parameters. 

The standard assumptions (ℋ) on fitting errors are as follows: 

𝑉𝑎𝑟(𝜖|𝑋) = 𝜎ଶ𝐼ே 

𝔼(𝜖|𝑋) = 0ே×ଵ 

Where 𝐼ே is an 𝑁 × 𝑁 identity matrix and 0ே×ଵ is the null vector of size 𝑁.  

The assumption of constant variance of residuals is known as the homoscedasticity assumption as we saw in our two-

dimensional example above. In other words, when the variance of residuals 𝑉𝑎𝑟(𝜖௜) = 𝜎௜ is not constant across all 
observations, residuals are heteroscedastic. 

Under (ℋ), the OLS estimator 𝛽መ = (𝑋்𝑋)ିଵ𝑋்𝑌 is the Best Linear Unbiased Estimator (BLUE) of 𝛽. However, this property 

does not hold under heteroscedasticity. 

3.3. A THEORETICAL APPROACH TO HETEROSCEDASTICITY 

After confirming heteroscedasticity of residuals, the variance-covariance matrix takes the more general form: 

𝑉𝑎𝑟(𝜖|𝑋) = Ω  

with, for any one-dimension residuals 𝑖 and 𝑗, Ω௜,௝ = 𝐶𝑜𝑣(𝜖௜ , 𝜖௝) 

In this case, the Generalised Least Squares (GLS) estimator  𝛽መୋ୐ୗ = (𝑋்Ωିଵ𝑋)ିଵ𝑋்Ωିଵ𝑌 

is the minimum variance linear unbiased estimator of 𝛽. Indeed this estimator is the OLS estimator of the linearly modified 

model that keeps our 𝛽, Ωି
భ

మ𝑌 = Ωି
భ

మ𝑋𝛽 + Ωି
భ

మ𝜖 or 𝑌ீ௅ௌ = 𝑋ீ௅ௌ𝛽 + 𝜖ீ௅ௌ.  

Residuals for this model are no longer heteroscedastic as seen by the variance of residuals: 𝑉𝑎𝑟(𝜖ீ௅ௌ|𝑋ீ௅ௌ) = Ωି
భ

మΩΩି
భ

మ = 𝐼ே 

3.4. SIMPLE MODEL EXAMPLES 

The remainder of section 4 is dedicated to exploring the sources of heteroscedasticity of residuals, in particular the 
residual double funnel seen in the examples above. A more detailed analysis of the sources of heteroscedasticity is 
required to determine whether a solution exists. A number of worked examples follow the mathematical notation in section 
3.4.1 and 3.4.2 below.  

We consider a simple model of the following form: 

𝑌 = 𝑓(𝑋ଵ, 𝑋ଶ) + 𝜖 = 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଵ𝑋ଶ + 𝜖 

with 𝑋ଵ and 𝑋ଶ centered and independent (in general, random variables induced by Sobol sequences outcomes, see 

Glasserman [2013], subsection 5.2.3), 𝜖 centered with unit variance. 

Below we try to explore various reasons of the appearance of residual double funnels, which are mathematically linked to 
the fact that function 𝑥ଵ ↦ 𝕍(𝜖̂ ∣ 𝑋ଵ = 𝑥ଵ) increases as |𝑥ଵ| increases. This is true for both 𝑥ଵ and 𝑥ଶ in our examples, but 

we consider 𝑥ଵ without any loss of generality. 

Let us now distinguish two model selection outcomes. Firstly, we are going to examine the case where model selection 
picks up a relevant cross-term successfully. Secondly, we are going to consider the case where our model selection does 
not detect this cross-term.  
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It is worth noting here that the double residual funnel can be characterised by the fact that the map 𝑥ଵ ↦ 

𝕍(𝜖̂ ∣ 𝑋ଵ = 𝑥ଵ) increases 𝑎𝑠 ∣ 𝑥ଵ ∣ increases. 

3.4.1. Case 1: Cross-term detected 

We get estimated parameters from the usual OLS estimator 

𝛽መ = ൫𝛽ଵ,෢ 𝛽ଶ,෢ 𝛽ଷ
෢൯ = (𝑋்𝑋)ିଵ𝑋்𝑌 

The variance-covariance matrix of the parameters then becomes: 

𝕍൫𝛽መ൯ = (𝑋்𝑋)ିଵ 

This tends to zero as the sample size increases. 

Looking at empirical residuals, 

𝜖̂ 

= 𝑌 − 𝑌෠ 

= 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଵ𝑋ଶ + 𝜖 − 𝛽ଵ
෢𝑋ଵ − 𝛽ଶ

෢𝑋ଶ − 𝛽ଷ
෢𝑋ଵ𝑋ଶ 

we can calculate their empirical variance subject to some level of the covariates 𝑋ଵ, assuming covariance between 

estimators and estimators/covariates being zero for the purpose of illustration: 

𝕍(𝜖̂ ∣ 𝑋ଵ = 𝑥ଵ) 

= 𝕍(𝜖 ∣ 𝑋ଵ = 𝑥ଵ) + 𝑥ଵ
ଶ𝕍൫𝛽ଵ

෢൯ + 𝕍 ቀ𝑋ଶ൫𝛽ଶ − 𝛽ଶ
෢൯ቁ + 𝑥ଵ

ଶ𝕍൫𝑋ଶ𝛽ଷ
෢൯ 

= 1 + 𝑥ଵ
ଶ𝕍൫𝛽ଵ

෢൯ + 𝕍(𝑋ଶ)𝔼 ቀ൫𝛽ଶ − 𝛽ଶ
෢൯

ଶ
ቁ + 𝕍൫𝛽ଶ − 𝛽ଶ

෢൯𝔼(𝑋ଶ
ଶ) + 𝑥ଵ

ଶ𝕍(𝑋ଶ)𝔼 ቀ𝛽ଷ
෢ଶ

ቁ + 𝑥ଵ
ଶ𝕍൫𝛽ଷ

෢൯𝔼(𝑋ଶ
ଶ) 

= 1 + 𝑥ଵ
ଶ𝕍൫𝛽ଵ

෢൯ + 2𝕍(𝑋ଶ)𝕍൫𝛽ଶ
෢൯ + 𝑥ଵ

ଶ𝕍(𝑋ଶ) ൬𝔼 ቀ𝛽ଷ
෢ଶ

ቁ + 𝕍൫𝛽ଷ
෢൯൰ 

= 1 + 𝑥ଵ
ଶ ቀ𝕍൫𝛽ଵ

෢൯ + 𝕍(𝑋ଶ)൫2𝕍൫𝛽ଷ
෢൯ + 𝛽ଷ

ଶ൯ቁ + 2𝕍(𝑋ଶ)𝕍൫𝛽ଶ
෢൯ 

Hence, we are going to observe a residual funnel if the sample size N is limited, the estimators’ variances are not too low 

and the cross-term effect is non-negligible, so that 𝕍൫𝛽ଵ
෢൯ + 𝕍(𝑋ଶ) ൬𝔼 ቀ𝛽ଷ

෢ଶ
ቁ + 𝕍൫𝛽ଷ

෢൯൰ has an impact. 

For small values of 𝑥ଵ we get 𝕍(𝜖̂ ∣ 𝑋ଵ = 𝑥ଵ) ∼ 1 + 2𝕍(𝑋ଶ)𝕍൫𝛽ଶ
෢൯ = 𝑐ே 

For large positive or negative values of 𝑥ଵ we get 𝕍(𝜖̂ ∣ 𝑋ଵ = 𝑥ଵ) ∼ 𝑐ே + 𝑥ଵ
ଶ ቀ𝕍൫𝛽ଵ

෢൯ + 𝕍(𝑋ଶ)൫2𝕍൫𝛽ଷ
෢൯ + 𝛽ଷ

ଶ൯ቁ, which includes 

the uncertainty in the cross-term estimate 𝕍൫𝛽ଷ
෢൯, as well as additional dispersion caused by the second variable 𝕍(𝑋ଶ). 

The double funnel size will decrease with the estimation sample size, as 𝕍൫𝛽መ൯ tends to 0. 

3.4.2. Case 2: Cross-term undetected 

In our second case, we try to estimate the "truth model" using the following function: 𝑌′෡ = 𝛽ଵ
෢𝑋ଵ + 𝛽ଶ

෢𝑋ଶ + 𝜖ᇱ෡   

where we now get 𝜖ᇱ = 𝛽ଷ𝑋ଵ𝑋ଶ + 𝜖 centered with variance 

𝕍(𝛽ଷ𝑋ଵ𝑋ଶ + 𝜖) = 𝛽ଷ
ଶ𝕍(𝑋ଵ𝑋ଶ) + 1 

Then  

𝜖′෡ 

= 𝑌 − 𝑌′෡  

= 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + 𝜖′ − 𝛽ଵ
෢𝑋ଵ − 𝛽ଶ

෢𝑋ଶ 

And 

𝕍൫𝜖ᇱ෡ ห𝑋ଵ = 𝑥ଵ൯ = 1 + 𝑥ଵ
ଶ൫𝛽ଷ

ଶ𝕍(𝑋ଶ) + 𝕍൫𝛽ଵ
෢൯̂൯ + 𝕍 ቀ𝑋ଶ൫𝛽ଶ − 𝛽ଶ

෢൯ቁ 

So whatever number N of training points we use, this variance will never decrease below 1 + 𝑥ଵ
ଶ𝛽ଷ

ଶ𝕍(𝑋ଶ), the double  

funnel will appear, and its size will not depend on N.  

A pronounced double funnel appears if both 𝕍(𝑋ଶ) and the scope of 𝑋ଵ outcomes are relatively large, such that the  

term 𝑥ଵ
ଶ𝛽ଷ

ଶ𝕍(𝑋ଶ) is significant. 
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3.4.3. Simple numerical illustrations 

To illustrate the above, we consider the stylised demo model 𝑌 = 𝑋ଵ + 𝑋ଶ + 𝑋ଵ𝑋ଶ + 𝜖, 

where 𝑋ଵ, 𝑋ଶ~𝒰([−2.5,2.5]), 𝜖~𝒩(0,1) and all random variables are independent.  

Firstly, we assume that our model selection algorithm does “find” the cross term (Case 1 above). 

 

FIGURE 5: OLS RESIDUALS, N = 100 (CASE 1) 

 

FIGURE 6: OLS RESIDUALS, N = 1,000 (CASE 1) 

 

In this example, residuals are homoscedastic and increasing the number of training data points does not significantly 
improve fitting errors as seen when we move from 100 points in Figure 5 above to 1,000 training points in Figure 6. 

To see how our model performs outside of the calibration range we can now increase the range of the fitting space from [-
2.5, +2.5] to [-25.0, +25.0], keeping the OLS parameters estimated above unchanged. In other words, we are validating 
our fitted model on a larger risk space. Results of this run are shown in Figure 7 and Figure 8. 

FIGURE 7: ENLARGED X1, OLS ESTIMATOR FOR N = 100 (CASE 1) 

 

FIGURE 8: ENLARGED X1, OLS ESTIMATOR FOR N = 1,000 (CASE 1) 

 

The double funnel (heteroscedasticity) appears when we validate our model beyond the initial calibration space, as seen 
in Figure 7. However, if we increase the number of fitting scenarios, we again obtain a good fit (Figure 8), with 
homoscedasticity assumption satisfied—significant reduction in residuals even though some heteroscedasticity exists. In 
this case, OLS residuals become homoscedastic when the numbers of fitting scenarios are increased.  

This shows how useful a test of larger covariate scopes can be when looking at residuals. It also shows how dangerous 
the use of an apparently “good” LSMC curve can be when evaluating risk scenarios that fall outside of the fitting space.  
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As expected, the double funnel size decreases as the number of fitting scenarios, N, increases. It is therefore essential 
that LSMC users select the number of training points carefully. 

In our next example, we look at the case where cross-terms exist but remain undetected. Figures 9 and 10 are based on 
the same example as Figures 7 and 8 with the only difference being that the model is set up to purposefully omit a cross-
term, This is done to illustrate our point in Case 2, i.e., increasing N will not always result in an improved model.  

FIGURE 9: STANDARD OLS RESIDUALS FOR N = 100 (CASE 2) 

 

FIGURE 10: STANDARD OLS RESIDUALS FOR N = 1,000 (CASE 2) 

 

In this case, the double funnel appears in the initial proxy model and increasing the number of fitting scenarios does not 
reduce heteroscedasticity. This should be a clear indication of heteroscedasticity due to a missing cross-term or model 
misspecification. This is quite likely to happen in practice where OLS is used.  

A refined example 

In our first example (Figures 5-8), we see that residuals are initially heteroscedastic and as we increase the size of the 
fitting data we observe an improvement in fitting quality up to the point where residuals become homoscedastic. We can 
use this information to set a criterion for the minimum number of training points, N. 

This is not the case in our second example (Figures 9-10) where the fitted model is not a good estimator of the demo 
model. Here, increasing N cannot reduce the residual funnel, as we have observed.  

The demo model used in the examples above is a simple one yet it demonstrates the point under discussion here and our 
findings can be generalised to a model with higher degrees of individual terms and cross-terms. To demonstrate this, we 
now consider the following model as our truth model: 

𝑌 = 𝑓(𝑋ଵ, 𝑋ଶ) + 𝜖 = 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଵ𝑋ଶ + 𝛽ସ𝑋ଵ
ଶ + 𝛽ହ𝑋ଶ

ଶ + 𝛽଺𝑋ଵ
ଶ𝑋ଶ + 𝛽଻𝑋ଵ𝑋ଶ

ଶ + 𝜖 

Fitting a proxy model to training data produced using this "truth model" results in the shape of residuals shown in  
Figure 11. 
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FIGURE 11: CASE 1 (NO MISSING TERM), ENLARGED X1, STANDARD 
OLS RESIDUALS FOR N = 1,000 

 

FIGURE 12: CASE 2 (ONE MISSING CROSS-TERM), STANDARD OLS 
RESIDUALS FOR N = 1,000 

 

Our OLS proxy-modelling algorithm appears to have picked up all terms of our truth model. The resulting fit is close  
to perfect! 

Our second example demonstrates the case where the fitting algorithm used is unable to detect a particular cross-term. 
Here, increasing N cannot reduce the resulting heteroscedasticity of residuals. This is in line with previous observations 
presented in this paper.  

Proxy modelling tools commonly used in the insurance industry, e.g., for Solvency II Internal Model purposes, are often 
applied on ALM models ("truth models") that embed inherent heteroscedasticity (such as higher Net Present Value 
volatility for extreme scenarios). 

There is no standard procedure to identify the root cause of heteroscedasticity in a particular model. In literature, statistical 
tests like White’s, Breush-Pagan or Goldfeld-Quandt (see Breusch and Pagan [1979], Goldfeld and Quandt [1965]) only 
check the hypothesis that the residual satisfies the homoscedasticity property, but if this is not the case, the test does not 
tell us what causes this effect. Then several approaches can be developed when trying to render models homoscedastic 
in practice, like GLS or Quasi-Generalised Least Squares (QGLS, see Shults & Hilbe [2014]). 

Conclusions and outlook 
LSMC proxy models are not always easy to validate, as a suboptimal fit may be due to a variety of reasons. LSMC Surgery is 
a useful framework to make LSMC troubleshooting more accurate without requiring any sizeable computing budget.  

We have shown how LSMC Surgery facilitates investigations into various fitting issues including the frequently observed 
heteroscedasticity issue in insurance applications. We have then looked into different heteroscedasticity causes, both 
theoretically and via stylised numerical examples. It has emerged that an increase of the simulation budget can help 
remove heteroscedasticity in cases where model selection successfully captures relevant cross-terms, but not in those 
cases where cross-terms remain undetected. Understanding the cause of heteroscedasticity is therefore important when 
looking at Insurance-specific applications of LSMC because some "natural causes" do exist, e.g., residual funnels caused 
by discounting at lower or negative rates in the interest rate risk space.  

Because heteroscedasticity cannot always be avoided in LSMC work, more advanced approaches may be worth 
considering as well. For example, piecewise LSMC only assumes local homoscedasticity and hence relaxes the (global) 
homoscedasticity assumption underpinning classical LSMC. Piecewise LSMC also improves fitting quality where kinks 
exist in the training data—something that is currently under investigation and will be the subject of our next LSMC paper. 
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